Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties.

نویسندگان

  • Nisha G Sosale
  • Kyle R Spinler
  • Cory Alvey
  • Dennis E Discher
چکیده

Professional phagocytes of the mononuclear phagocyte system (MPS), especially ubiquitous macrophages, are commonly thought to engulf or not a target based strictly on 'eat me' molecules such as Antibodies. The target might be a viable 'self' cell or a drug-delivering nanoparticle, or it might be a cancer cell or a microbe. 'Marker of Self' CD47 signals into a macrophage to inhibit the acto-myosin cytoskeleton that makes engulfment efficient. In adhesion of any cell, the same machinery is generally activated by rigidity of target surfaces, and recent results confirm phagocytosis is likewise driven by the rigidity typical of microbes and many synthetics. Basic insights are already being applied in order to make macrophages eat cancer or to delay nanoparticle clearance for better drug delivery and imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells

Phagocytosis of foreign cells or particles by macrophages is a rapid process that is inefficient when faced with "self" cells that display CD47-although signaling mechanisms in self-recognition have remained largely unknown. With human macrophages, we show the phagocytic synapse at cell contacts involves a basal level of actin-driven phagocytosis that, in the absence of species-specific CD47 si...

متن کامل

Cell rigidity and shape override CD47's "self"-signaling in phagocytosis by hyperactivating myosin-II.

A macrophage engulfs another cell or foreign particle in an adhesive process that often activates myosin-II, unless the macrophage also engages "marker of self" CD47 that inhibits myosin. For many cell types, adhesion-induced activation of myosin-II is maximized by adhesion to a rigid rather than a flexible substrate. Here we demonstrate that rigidity of a phagocytosed cell also hyperactivates ...

متن کامل

Engineering macrophages to eat cancer: from "marker of self" CD47 and phagocytosis to differentiation.

The ability of a macrophage to engulf and break down invading cells and other targets provides a first line of immune defense in nearly all tissues. This defining ability to "phagos" or devour can subsequently activate the entire immune system against foreign and diseased cells, and progress is now being made on a decades-old idea of directing macrophages to phagocytose specific targets, such a...

متن کامل

Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells.

Rapid clearance of adoptively transferred Cd47-null (Cd47(-/-)) cells in congeneic WT mice suggests a critical self-recognition mechanism, in which CD47 is the ubiquitous marker of self, and its interaction with macrophage signal regulatory protein α (SIRPα) triggers inhibitory signaling through SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and tyrosine phosphatase SHP-1/2. ...

متن کامل

Loss of Cell Surface CD47 Clustering Formation and Binding Avidity to SIRPα Facilitate Apoptotic Cell Clearance by Macrophages.

CD47, a self recognition marker expressed on tissue cells, interacts with immunoreceptor SIRPα expressed on the surface of macrophages to initiate inhibitory signaling that prevents macrophage phagocytosis of healthy host cells. Previous studies suggested that cells may lose surface CD47 during aging or apoptosis to enable phagocytic clearance. In the current study, we demonstrate that the leve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in immunology

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2015